Double-shift schooling and student success: Quasi-experimental evidence from Europe

Lester Lusher *, Vasil Yasenov

University of California, Davis, United States

HIGHLIGHTS

- This paper examines student performance during double-shift schooling systems.
- We utilize a quasi-experiment where students alternated school blocks every month.
- Estimated models include student–class and month fixed effects.
- Results suggest a small, precisely estimated drop in grades during afternoon blocks.

ARTICLE INFO

Article history:
Received 4 September 2015
Received in revised form 9 December 2015
Accepted 13 December 2015
Available online 29 December 2015

JEL classification:
H52
I20
I21
I25
I28

Keywords:
Double-shift schooling
Education production
Education policy
School start time

ABSTRACT

School scheduling systems are frequently at the forefront of policy discussions around the world. This paper provides the first causal evidence of student performance during double-shift schooling systems. We exploit a six-year quasi-experiment from a country in Eastern Europe where students alternated between morning and afternoon school blocks every month. We estimate models with student–class and month fixed effects using data on over 260,000 assignment-level grades. We find a small, precisely estimated drop in student performance during afternoon blocks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over 45 countries spanning the five major continents currently implement double-shift schooling systems, where two populations of students get split into morning and afternoon blocks. Students in the first session typically attend school from the early morning to the early afternoon, while the second session students arrive soon after the morning session ends and stay until the late afternoon. Because it enables a single set of resources (e.g. facilities, instructors, textbooks) to serve multiple cohorts of students, the main purpose of the double-shift system is to increase the supply of schools while minimizing costs. Policymakers often cite double-shift schooling systems as a way developing countries can attain universal primary and secondary education (Bray, 2008). While being most commonly implemented in developing countries (due to resource constraints) and urban areas (where population density is higher), double-shift schooling systems also exist in some prosperous societies, including the United States (Sagvydykova, 2013).

While the cost-savings resulting from a double-shift schooling system are clear, policymakers shy away from introducing multiple
shifts in schools. The principle debate centers on the lack of causal evidence of how student performance could be affected by taking classes during the afternoon block. Overall, detractors worry about potential drops in student performance during afternoon sessions. For example, students may choose to spend less time studying after school as afternoon hours become relatively scarce. The opportunity costs affiliated with attending school later in the day could also be higher for students. Furthermore, instructors who teach both morning and afternoon blocks may be more fatigued during their afternoon sessions.

The prior literature has focused on using between school variation to document student performance in double-shift systems (e.g. Fuller et al., 1999; Herrán and Rodríguez, 2000; Sagyndykova, 2013). By failing to utilize any exogenous variation in school block, these studies are entirely correlational in nature. This paper provides the first causal evidence on student performance in double-shift schooling systems by exploiting a six-year quasi-experiment where cohorts of students alternated between morning and afternoon school blocks every month.

2. Data and institutional background

Our study focuses on a community of middle and high schoolers from 2008 to 2014. Each incoming middle and high schooler gets assigned a cohort based on the student’s academic interests, and students only take classes with other students from their cohort for the remainder of their time in school. The data comprise of a complete list of raw, pen-to-paper grades received on all homework, quiz, and exam assignments. Each assignment received one of five integer grades, ranging from 2 (lowest) to 6 (highest). Raw grades were not curved or edited upon being graded. Grades are normalized to a mean of zero and a standard deviation of one within a class, where class is defined as a combination of a course (e.g. 10th grade Biology for science cohort) and school year (e.g. 2009–2010). Summary statistics are presented in Table 1.

During the period of our study, a variant of the double-shift schooling system was implemented where students, by cohort, alternated between morning and afternoon blocks each month. All other aspects of the schools were kept constant, including the ordering of classes within block and the teachers who taught the classes. High school cohorts were placed into morning blocks, which started at 7:30 AM and lasted until 1:20 PM, during September and the “even” months (October, December, February, April, and June), while middle school cohorts attended the morning block in all remaining “odd” months (November, January, March, and May). Thus, high (middle) school cohorts attended the afternoon block during odd (September and even) months. The afternoon block started shortly after the end of the morning block at 1:30 PM, and lasted until 7:20 PM (See Fig. 1). The quasi-experiment was implemented in response to local organizers’ inability to come to an agreement where cohorts remained entrenched in one block for the entire school year.

3. Identification strategy

Our primary analysis estimates the following specification:

\[
Grade_{aicmy} = \alpha + \beta \text{LateBlock}_{im} + \gamma X_{aicmy} + \delta_{cy} + \lambda_{m} + \epsilon_{aicmy} \tag{1}
\]

where \(Grade_{aicmy}\) is the normalized grade student \(i\) received on assignment \(a\) in course \(c\) during month \(m\) and school year \(y\). \(\text{LateBlock}_{im}\) is an indicator variable equal to one if student \(i\)’s assignment was completed during an afternoon block month. \(X_{aicmy}\) is a vector of controls including the order of the assignment \(a\) and the number of assignments student \(i\) completed in class \(cy\) within month \(m\). \(\delta_{cy}\) are student–class fixed effects, which
control for mean differences in academic achievement for each student–class combination. With δ_{ij}, not only do we control for unobserved class-level characteristics (e.g. teacher ability, class difficulty) and student-level characteristics (e.g. intelligence), but we also control for student–class specific unobservables that may influence grades. Furthermore, since school block varies across students within month, we include month fixed effects λ_{mt} to control for any unobserved variables that vary by month and influence student performance (e.g. weather). Thus, our identification strategy effectively compares the performance of the same student in the same class across morning and afternoon school blocks. The coefficient β can be interpreted as the average change in standardized grade in response to the afternoon block. Our estimates will be biased only if an omitted term correlates across every odd month, has power in predicting assignment grades, and differentially impacts high schoolers versus middle schoolers.

4. Results

Table 2 presents our main results. Each cell from Model 1 reports an estimated coefficient for LateBlock_{itm}. Standard errors are two-way clustered at the student and class level (Cameron et al., 2011). Across all considered specifications, we attain statistical significance at the 1% level. From column (6), the full specification, we predict a 0.029 standard deviation decrease in assignment grade during the afternoon block.\(^5\) Estimates are fairly insensitive across specifications. In Model 2, we interact LateBlock_{itm} with an indicator for whether the student was in high school. Similarly, in Model 3, we interact LateBlock_{itm} with an indicator for classes that started between 7:30 to 8:30 AM in morning blocks and 1:30 to 2:30 PM in afternoon blocks. We report the coefficients and standard errors on the interaction terms on the bottom two rows of each model. We find little evidence of differential responses by student age or by ordering of the class.

We also fit ordered probit and (fixed effect) ordered logit models on the raw grades data in Table 3. Panel A displays the coefficient of LateBlock_{itm}, while Panel B presents marginal effects of the afternoon school block on the probability of obtaining each grade at the controls’ means. The final column includes student–class fixed effects.

\(^5\) For reference, Carrell et al. (2011) estimate a 0.140 standard deviation increase in student achievement in response to a one-hour delay in school start time. Pope (2015) finds a 0.021 standard deviation decrease in standardized math test scores for students who took math classes in periods 5–6 (12:50–2:45 PM) versus periods 1–2 (8:00–9:55 AM).
each grade evaluated at the controls’ means. The final column presents results from the ordered logit model with student–class fixed effects using the \textit{Das} and \textit{Van Soest} (1999) estimator. The probability of obtaining a low grade (2, 3 or 4) slightly increases in response to the afternoon shift.

4.1. Conclusions

Policymakers around the world regularly deliberate over optimal school scheduling systems. This paper utilizes within student–class and within month variation in school block to find a small, precisely estimated drop in student performance during afternoon blocks. Overall, the evidence suggests that the double-shift system may be a cost-effective policy communities can implement to combat resource constraints.

Acknowledgments

We would like to thank Mark Bray, Colin Cameron, Scott Carrell, Paco Martorell, Doug Miller, and Vladimir Tyazhelnikov for helpful comments. Nicholas Halliwell, Bhaverpreet Sidhu, and Catherine Jiang provided excellent research assistance.

\textbf{References}

Hinrichs, P., 2011. When the bell tolls: The effects of school starting times on academic achievement. Education 6, 486–507.

\footnote{Cameron and Trivedi (2005) describe the basic setup of ordered logit and probit models, while Baetschmann et al. (2014) discuss the arising problems in estimation of fixed effects ordered logit models and summarize the proposed solutions. The fixed effect ordered logit estimator does not permit computation of marginal effects, but the larger coefficient in Panel A indicates an increase in the effect on the latent variable.}